Geometric Proofs

Epsilon Summer Series Class 6

August 14, 2014

1 Topics

- Equal, supplementary, complementary angles with parallel and perpendicular lines
- Cyclic quadrilaterals: Quadrilateral ABCD is cyclic if all its vertices lie on a circle. Then:

$$
\begin{aligned}
& -\angle A B D=\angle A C D, \angle A D B=\angle A C B, \angle B D C=\angle B A C, \angle C A D=\angle C B D \\
& -\angle A B C+\angle A D C=180, \angle B C D+\angle B A D=180
\end{aligned}
$$

Note that these criteria work in the other direction, and can be used to show a quadrilateral is cyclic.

- Let $A B C$ be a triangle, and D be a point such that $D A$ is tangent to the circumcircle of $A B C$ and D is on the same side as B. Then $\angle D A B=\angle A C B$.
These facts can be used to determine equal angles in a method known as angle-chasing.
- Know SSS, SAS, ASA, AA congruences and similarities!
- Power of a point: Let P be a point and ω be a circle. Let ℓ be an arbitrary line passing through P and intersecting ω at A and B. The product $P A \cdot P B$ is constant. This constant is known as the power of P with respect to ω.
One convention is that if P is inside ω, then the power is negative, and if P is outside, the power is positive. Then, if ω has center O and radius r, the power of P is $P O^{2}-r^{2}$.
- Radical Axis: Given two circles ω_{1}, ω_{2}, what is the locus (the set) of all points that have equal powers with respect to both circles? Using coordinates we can show that this locus, known as the radical axis, is a line. Thus if two circles intersect at X, Y, their radical axis is $X Y$. Given three circles, the three radical axes concur (why?).
- Triangle centers: The perpendicular bisectors (circumcenter), medians (centroid), angle bisectors (incenter), and altitudes (orthocenter) concur. Know the proofs for each. Also be able to find equal angles in each configuration.
- Homothety: a dilation centered at a point.

2 Cool Configurations

1. The orthocenter and the circumcenter:

First, there are a TON of cylic quads and equal angles in the orthocenter and altitudes configuration. Try to find them all.

The reflections of the orthocenter over the sides and midpoints of sides lie on the circumcircle.
The orthocenter is the incenter of the orthic triangle.
The orthocenter (H) and circumcenter (O) are isogonal conjugates. What does that mean? It means $\angle B A O=\angle C A H, \angle C B O=\angle A B H, \angle A C O=\angle B C H$.

2. Incenter and Excenters:

Let the angle bisector of A intersect the circumcircle at M. Then M is the midpoint of the arc $B C$.

The incenter is the orthocenter of the triangle formed by the excenters.
Let the A-Excenter (E) be the center of the other circle tangent to $B C$ and the rays $A B$ and $A C$. Note that E must be the interesection of the angle bisector of A with the external angle bisectors of B and C. We then have that $I B E C$ is cyclic with center M.

If the A-excircle intersects $B C$ at F, and the incircle intersects $B C$ at D, then $B D=C F$.

3. Nine-point circle and Euler line:

The centroid, circumcenter, and orthocenter are concurrent! They lie on the line known as the Euler line. Also, G divides the segment $O H$ in a $1: 2$ ratio.

Let $A H, B H, C H$ intersect $B C, A C, A B$ at D, E, F, let the midpoints of the sides be M, N, P, and let the midpoints of $A H, B H, C H$ be X, Y, Z. Then $D, E, F, M, N, P, X, Y, Z$ all lie on a circle! This is known as the nine point circle, and its center is the midpoint of OH .

3 Computational Methods

Aside from angle chasing and similar triangles, problems can be solved with computational methods too! Remember:

- Law of sines/cosines
- Trig (with right angles)
- Area ratios
- Pythagorean theorem
- Coordinates (cartesian, complex numbers, barycentric)

4 Problems

1. Prove the angle bisector theorem.
2. Let ABCD be a cyclic quadrilateral and denote by P its intersection of diagonals. Let circle ω passing through A and B intersect segments $P C, P D$, at X, Y respectively. Prove that $X Y$ is parallel to $C D$
3. Let circles ω_{1}, ω_{2} intersect at A, B and let P be a point on the segment $A B$. Line ℓ_{1} through P intersects ω_{1} at K and L, and line ℓ_{2} through P intersects ω_{2} at M and N. Prove that points K, L, M, N lie on a circle.
4. Circles ω, ω^{\prime} intersect at A and B. An arbitrary line through A intersects them for a second time at C, D, respectively. The tangents at C, D to the respective circles intersect at P. Prove that P lies on the circumcircle of $B C D$.
5. Let L and K be points on the lines $A C$ and $B C$. Prove that the common hcord of the circles with diameters $A K$ and $B L$ passes through the orhtocenter H of $A B C$.
6. (JBMO 2010) Let $B K$ and $C L$ be angle bisectors in an acute triangle $A B C$ with incenter I. The perpendicular bisector of $L C$ intersects the line $B K$ at point M. Point N lies on the line $C L$ such that $N K$ is parallel to $L M$. Prove that $N K=N B$.
7. (Simson Line) Let P be a point on the circumcircle of $A B C$. Prove that the projections of P onto the sides of $A B C$ are collinear.
8. (2012 USAJMO \#1) Given a triangle $A B C$, let P and Q be points on segments $\overline{A B}$ and $\overline{A C}$, respectively, such that $A P=A Q$. Let S and R be distinct points on segment $\overline{B C}$ such that S lies between B and $R, \angle B P S=\angle P R S$, and $\angle C Q R=\angle Q S R$. Prove that P, Q, R, S are concyclic (in other words, these four points lie on a circle).
9. Let the incircle of triangle $A B C$ intersect $B C$ at D, let the A-excircle intersect $B C$ at E, and let F be the point diametrically opposite D on the incircle. Prove A, F, E are collinear.
10. (2013 IMO \#4) Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} is the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogoously, denote by ω_{2} the circumcircle of triangle $C W M$, and let Y be the point such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.
